16.2: Gradient fields
 16.4 Green's Theorem

Jeremiah Southwick

Spring 2019

Last class

Definition

A vector field is a function

$$
\overrightarrow{\mathbf{F}}=M(x, y, z) \overrightarrow{\mathbf{i}}+N(x, y, z) \overrightarrow{\mathbf{j}}+P(x, y, z) \overrightarrow{\mathbf{k}}
$$

that outputs a vector for every point (x, y, z) in space.

Definition

Let $\overrightarrow{\mathbf{F}}$ be a vector field with continuous components defined along a smooth curve C parametrized by $\overrightarrow{\mathbf{r}}(t), a \leq t \leq b$. Then the line integral of $\overrightarrow{\mathbf{F}}$ along C is

$$
\int_{C} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{T}} d s=\int_{C} \overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{r}}=\int_{C}\left(\overrightarrow{\mathbf{F}} \cdot \frac{d \overrightarrow{\mathbf{r}}}{d t}\right) d t .
$$

Gradient fields

Definition

The gradient field of a differentiable function $f(x, y, z)$ is the vector field of gradient vectors

$$
\nabla f=\frac{\partial f}{\partial x} \overrightarrow{\mathbf{i}}+\frac{\partial f}{\partial y} \overrightarrow{\mathbf{j}}+\frac{\partial f}{\partial z} \overrightarrow{\mathbf{k}}
$$

Gradient fields

Definition

The gradient field of a differentiable function $f(x, y, z)$ is the vector field of gradient vectors

$$
\nabla f=\frac{\partial f}{\partial x} \overrightarrow{\mathbf{i}}+\frac{\partial f}{\partial y} \overrightarrow{\mathbf{j}}+\frac{\partial f}{\partial z} \overrightarrow{\mathbf{k}}
$$

Example

Find the gradient field of $g(x, y, z)=e^{z}-\ln \left(x^{2}+y^{2}\right)$.

Gradient fields

Definition

The gradient field of a differentiable function $f(x, y, z)$ is the vector field of gradient vectors

$$
\nabla f=\frac{\partial f}{\partial x} \overrightarrow{\mathbf{i}}+\frac{\partial f}{\partial y} \overrightarrow{\mathbf{j}}+\frac{\partial f}{\partial z} \overrightarrow{\mathbf{k}}
$$

Example

Find the gradient field of $g(x, y, z)=e^{z}-\ln \left(x^{2}+y^{2}\right)$.
Taking partial derivatives, we find that the gradient field of g is

$$
\nabla g=\left\langle-\frac{2 x}{x^{2}+y^{2}},-\frac{-2 y}{x^{2}+y^{2}}, e^{z}\right\rangle
$$

Green's Theorem in the plane

We now introduce some notation that will allow us to state Green's Theorem.

Green's Theorem in the plane

We now introduce some notation that will allow us to state Green's Theorem.

Definition
A curve C in the xy-plane is simple if it does not cross itself.

Green's Theorem in the plane

We now introduce some notation that will allow us to state Green's Theorem.

Definition

A curve C in the xy-plane is simple if it does not cross itself.
Definition
A curve C in the xy-plane is closed if it starts and ends at the same point.

Green's Theorem in the plane

We now introduce some notation that will allow us to state Green's Theorem.

Definition

A curve C in the xy-plane is simple if it does not cross itself.

Definition

A curve C in the xy-plane is closed if it starts and ends at the same point.

Example

The curve C parametrized by $\overrightarrow{\mathbf{r}}(t)=\cos (t) \overrightarrow{\mathbf{i}}+\sin (t) \overrightarrow{\mathbf{j}}, \quad 0 \leq t \leq 2 \pi$ is both simple and closed.

Green's Theorem in the plane

We now introduce some notation that will allow us to state Green's Theorem.

Definition

A curve C in the xy-plane is simple if it does not cross itself.

Definition

A curve C in the xy-plane is closed if it starts and ends at the same point.

Example

The curve C parametrized by $\overrightarrow{\mathbf{r}}(t)=\cos (t) \overrightarrow{\mathbf{i}}+\sin (t) \overrightarrow{\mathbf{j}}, \quad 0 \leq t \leq 2 \pi$ is both simple and closed.
However, if we take $0 \leq t \leq \pi$ above, it is only simple, and if we take $0 \leq t \leq 4 \pi$, it is closed but not simple.

Integral notation

If we take a line integral over a closed curve C, we use the notation

$$
\oint_{C}
$$

to represent the fact that the line integral comes back to where it started.

Green's Theorem

Theorem
Let C be a piecewise smooth, simple closed curve enclosing a region R in the plane. Let $\overrightarrow{\mathbf{F}}=M(x, y) \overrightarrow{\mathbf{i}}+N(x, y) \overrightarrow{\mathbf{j}}$ be a vector field with M and N having continuous first partial derivatives in an open region containing R. Then the following holds.

$$
\oint_{C} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{T}} d s=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A
$$

Green's Theorem

Theorem
Let C be a piecewise smooth, simple closed curve enclosing a region R in the plane. Let $\overrightarrow{\mathbf{F}}=M(x, y) \overrightarrow{\mathbf{i}}+N(x, y) \overrightarrow{\mathbf{j}}$ be a vector field with M and N having continuous first partial derivatives in an open region containing R. Then the following holds.

$$
\oint_{C} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{T}} d s=\iint_{R}\left(\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}\right) d A
$$

This says we can calculate the line integral of a vector field over a closed curve as a double integral over the region that the curve encloses.

Example

Example

Let $\overrightarrow{\mathbf{F}}=\left(x^{2} y\right) \overrightarrow{\mathbf{i}}+\left(x y^{3}\right) \overrightarrow{\mathbf{j}}$. Let C be the closed triangular curve beginning at $(0,0)$, going to $(1,0)$, then to $(0,1)$, then back to $(0,0)$. Calculate $\oint_{C} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{T}} d s$ using Green's Theorem.

Example

Example

Let $\overrightarrow{\mathbf{F}}=\left(x^{2} y\right) \overrightarrow{\mathbf{i}}+\left(x y^{3}\right) \overrightarrow{\mathbf{j}}$. Let C be the closed triangular curve beginning at $(0,0)$, going to $(1,0)$, then to $(0,1)$, then back to $(0,0)$. Calculate $\oint_{C} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{T}} d s$ using Green's Theorem.
We parametrize C as three lines:
$\overrightarrow{\mathbf{r}}_{1}(t)=t \overrightarrow{\mathbf{i}}, \quad \overrightarrow{\mathbf{r}}_{2}(t)=(1-t) \overrightarrow{\mathbf{i}}+(t) \overrightarrow{\mathbf{j}}, \quad \overrightarrow{\mathbf{r}}_{3}(t)=(1-t) \overrightarrow{\mathbf{j}}$ each over $0 \leq t \leq 1$

Example

Example

Let $\overrightarrow{\mathbf{F}}=\left(x^{2} y\right) \overrightarrow{\mathbf{i}}+\left(x y^{3}\right) \overrightarrow{\mathbf{j}}$. Let C be the closed triangular curve beginning at $(0,0)$, going to $(1,0)$, then to $(0,1)$, then back to $(0,0)$. Calculate $\oint_{C} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{T}} d s$ using Green's Theorem.
We parametrize C as three lines:
$\overrightarrow{\mathbf{r}}_{1}(t)=t \overrightarrow{\mathbf{i}}, \quad \overrightarrow{\mathbf{r}}_{2}(t)=(1-t) \overrightarrow{\mathbf{i}}+(t) \overrightarrow{\mathbf{j}}, \quad \overrightarrow{\mathbf{r}}_{3}(t)=(1-t) \overrightarrow{\mathbf{j}}$ each over $0 \leq t \leq 1$

Notice that $\overrightarrow{\mathbf{F}}\left(\overrightarrow{\mathbf{r}}_{1}(t)\right)=\overrightarrow{\mathbf{0}}$ and $\overrightarrow{\mathbf{F}}\left(\overrightarrow{\mathbf{r}}_{3}(t)\right)=\overrightarrow{\mathbf{0}}$. Thus

Example

Example

Let $\overrightarrow{\mathbf{F}}=\left(x^{2} y\right) \overrightarrow{\mathbf{i}}+\left(x y^{3}\right) \overrightarrow{\mathbf{j}}$. Let C be the closed triangular curve beginning at (0,0), going to (1,0), then to $(0,1)$, then back to $(0,0)$. Calculate $\oint_{C} \overrightarrow{\mathbf{F}} \cdot \mathbf{T} d s$ using Green's Theorem.
We parametrize C as three lines:

$$
\overrightarrow{\mathbf{r}}_{1}(t)=t \overrightarrow{\mathbf{i}}, \quad \overrightarrow{\mathbf{r}}_{2}(t)=(1-t) \overrightarrow{\mathbf{i}}+(t) \overrightarrow{\mathbf{j}}, \quad \overrightarrow{\mathbf{r}}_{3}(t)=(1-t) \overrightarrow{\mathbf{j}} \text { each over } 0 \leq t \leq 1
$$

Notice that $\overrightarrow{\mathbf{F}}\left(\overrightarrow{\mathbf{r}}_{1}(t)\right)=\overrightarrow{\mathbf{0}}$ and $\overrightarrow{\mathbf{F}}\left(\overrightarrow{\mathbf{r}}_{3}(t)\right)=\overrightarrow{\mathbf{0}}$. Thus

$$
\begin{aligned}
& \oint_{C} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{T}} d s=\int_{0}^{1} \overrightarrow{\mathbf{F}}\left(\overrightarrow{\mathbf{r}}_{2}(t)\right) \cdot \frac{d \overrightarrow{\mathbf{r}}_{2}}{d t} d t=\int_{0}^{1}\left\langle(1-t)^{2}(t),(1-t) t^{3}\right\rangle \cdot\langle-1,1\rangle d t \\
& \left.=\int_{0}^{1}\left(-t+2 t^{2}-t^{3}+t^{3}-t^{4}\right) d t=-\frac{t^{2}}{2}+\frac{2}{3} t^{3}-\frac{t^{5}}{5}\right]_{0}^{1}=-\frac{1}{2}+\frac{2}{3}-\frac{1}{5}=-\frac{1}{30}
\end{aligned}
$$

Example

Example

Let $\overrightarrow{\mathbf{F}}=\left(x^{2} y\right) \overrightarrow{\mathbf{i}}+\left(x y^{3}\right) \overrightarrow{\mathbf{j}}$. Let C be the closed triangular curve beginning at (0,0), going to (1,0), then to (0,1), then back to $(0,0)$. Calculate $\oint_{C} \overrightarrow{\mathbf{F}} \cdot \mathbf{T} d s$ using Green's Theorem.
We could also calculate the line integral using Green's Theorem. We have $\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}=y^{3}-x^{2}$, and the triangle formed by $(0,0)$, $(1,0)$, and $(0,1)$ can be written with horizontal cross-sections as $0 \leq x \leq 1-y, 0 \leq y \leq 1$. Thus

$$
\begin{aligned}
& \oint_{C} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{T}} d s=\int_{y=0}^{y=1} \int_{x=0}^{x=1-y}\left(y^{3}-x^{2}\right) d x d y=\int_{y=0}^{y=1}\left[y^{3} x-\frac{x^{3}}{3}\right]_{x=0}^{x=1-y} d y \\
& =\int_{0}^{1}\left(y^{3}-y^{4}-\frac{1}{3}+\frac{y^{3}}{3}+y-y^{2}\right) d y=\frac{1}{4}-\frac{1}{5}-\frac{1}{3}+\frac{1}{12}+\frac{1}{2}-\frac{1}{3}=-\frac{1}{30}
\end{aligned}
$$

