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Last class

Definition
A vector field is a function

~F = M(x , y , z)~i + N(x , y , z)~j + P(x , y , z)~k

that outputs a vector for every point (x , y , z) in space.

Definition
Let ~F be a vector field with continuous components defined along
a smooth curve C parametrized by ~r(t), a ≤ t ≤ b. Then the line
integral of ~F along C is∫

C

~F · ~Tds =

∫
C

~F · d~r =

∫
C

(~F · d
~r

dt
)dt.



Gradient fields

Definition
The gradient field of a differentiable function f (x , y , z) is the
vector field of gradient vectors

∇f =
∂f

∂x
~i +

∂f

∂y
~j +

∂f

∂z
~k

Example

Find the gradient field of g(x , y , z) = ez − ln(x2 + y2).

Taking partial derivatives, we find that the gradient field of g is

∇g = 〈− 2x

x2 + y2
,− −2y

x2 + y2
, ez〉.



Gradient fields

Definition
The gradient field of a differentiable function f (x , y , z) is the
vector field of gradient vectors

∇f =
∂f

∂x
~i +

∂f

∂y
~j +

∂f

∂z
~k

Example

Find the gradient field of g(x , y , z) = ez − ln(x2 + y2).

Taking partial derivatives, we find that the gradient field of g is

∇g = 〈− 2x

x2 + y2
,− −2y

x2 + y2
, ez〉.



Gradient fields

Definition
The gradient field of a differentiable function f (x , y , z) is the
vector field of gradient vectors

∇f =
∂f

∂x
~i +

∂f

∂y
~j +

∂f

∂z
~k

Example

Find the gradient field of g(x , y , z) = ez − ln(x2 + y2).

Taking partial derivatives, we find that the gradient field of g is

∇g = 〈− 2x

x2 + y2
,− −2y

x2 + y2
, ez〉.



Green’s Theorem in the plane

We now introduce some notation that will allow us to state
Green’s Theorem.

Definition
A curve C in the xy -plane is simple if it does not cross itself.

Definition
A curve C in the xy -plane is closed if it starts and ends at the
same point.

Example

The curve C parametrized by ~r(t) = cos(t)~i + sin(t)~j, 0 ≤ t ≤ 2π
is both simple and closed.

However, if we take 0 ≤ t ≤ π above, it is only simple, and if we
take 0 ≤ t ≤ 4π, it is closed but not simple.
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Integral notation

If we take a line integral over a closed curve C , we use the notation∮
C

to represent the fact that the line integral comes back to where it
started.



Green’s Theorem

Theorem
Let C be a piecewise smooth, simple closed curve enclosing a
region R in the plane. Let ~F = M(x , y)~i + N(x , y)~j be a vector
field with M and N having continuous first partial derivatives in an
open region containing R. Then the following holds.∮

C

~F · ~Tds =

∫ ∫
R

(
∂N

∂x
− ∂M

∂y

)
dA

This says we can calculate the line integral of a vector field over a
closed curve as a double integral over the region that the curve
encloses.
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Example

Example

Let ~F = (x2y)~i + (xy3)~j. Let C be the closed triangular curve
beginning at (0,0), going to (1,0), then to (0,1), then back to
(0,0). Calculate

∮
C
~F · ~Tds using Green’s Theorem.

We parametrize C as three lines:

~r1(t) = t~i, ~r2(t) = (1−t)~i+(t)~j, ~r3(t) = (1−t)~j each over 0 ≤ t ≤ 1

Notice that ~F(~r1(t)) = ~0 and ~F(~r3(t)) = ~0. Thus

∮
C

~F·~Tds =

∫ 1

0

~F(~r2(t))·d
~r2
dt

dt =

∫ 1

0
〈(1−t)2(t), (1−t)t3〉·〈−1, 1〉dt.

=

∫ 1

0
(−t+2t2−t3+t3−t4)dt = − t2

2
+

2

3
t3− t5

5

]1
0

= −1

2
+

2

3
−1

5
= − 1

30
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We could also calculate the line integral using Green’s Theorem.
We have ∂N

∂x −
∂M
∂y = y3 − x2, and the triangle formed by (0, 0),

(1, 0), and (0, 1) can be written with horizontal cross-sections as
0 ≤ x ≤ 1− y , 0 ≤ y ≤ 1. Thus∮
C

~F·~Tds =

∫ y=1

y=0

∫ x=1−y

x=0
(y3−x2) dx dy =

∫ y=1

y=0

[
y3x−x3

3

]x=1−y

x=0

dy

=

∫ 1

0
(y3−y4− 1

3
+
y3

3
+y−y2)dy =

1

4
− 1

5
− 1

3
+

1

12
+

1

2
− 1

3
= − 1

30


