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Last class

Definition
A vector field is a function

F=M(x,y,2)i + N(x,y, 2)j + P(x,y, 2)k
that outputs a vector for every point (x,y, z) in space.

Definition

Let F be a vector field with continuous components defined along
a smooth curve C parametrized by ¥(t), a <t < b. Then the line
integral of F along C is

/?-fds:/ﬁ-d?:/(?-dr)dt.
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Gradient fields

Definition
The gradient field of a differentiable function f(x,y,z) is the
vector field of gradient vectors
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Example
Find the gradient field of g(x,y,z) = e* — In(X2 + y2)-



Gradient fields

Definition
The gradient field of a differentiable function f(x,y,z) is the
vector field of gradient vectors
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Example
Find the gradient field of g(x,y,z) = € — In(x? + y?).
Taking partial derivatives, we find that the gradient field of g is

2x —2y
- — e
X2 y? 2y
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Green's Theorem in the plane

We now introduce some notation that will allow us to state
Green's Theorem.
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The curve C parametrized by ¥(t) = cos(t)i +sin(t)j, 0 <t < 2r
is both simple and closed.



Green's Theorem in the plane

We now introduce some notation that will allow us to state
Green's Theorem.

Definition
A curve C in the xy-plane is simple if it does not cross itself.

Definition
A curve C in the xy-plane is closed if it starts and ends at the
same point.

Example

The curve C parametrized by ¥(t) = cos(t)i +sin(t)j, 0 <t < 2r
is both simple and closed.

However, if we take 0 < t < 7 above, it is only simple, and if we
take 0 < t < 4, it is closed but not simple.



Integral notation

If we take a line integral over a closed curve C, we use the notation

I

to represent the fact that the line integral comes back to where it
started.



Green's Theorem

Theorem

Let C be a piecewise smooth, simple closed curve enclosing a
region R in the plane. Let F = M(x,y)i + N(x, y)j be a vector
field with M and N having continuous first partial derivatives in an
open region containing R. Then the following holds.
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Green's Theorem

Theorem

Let C be a piecewise smooth, simple closed curve enclosing a
region R in the plane. Let F = M(x,y)i + N(x, y)j be a vector
field with M and N having continuous first partial derivatives in an
open region containing R. Then the following holds.

v (-5

This says we can calculate the line integral of a vector field over a
closed curve as a double integral over the region that the curve
encloses.
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Example

Let F = (x2y)i + (xy3)j. Let C be the closed triangular curve
beginning at (0,0), going to (1,0), then to (0,1), then back to
(0,0). Calculate ¢ F - Tds using Green's Theorem.
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Let F = (x2y)i + (xy3)j. Let C be the closed triangular curve
beginning at (0,0), going to (1,0), then to (0,1), then back to
(0,0). Calculate ¢ F - Tds using Green's Theorem.

We parametrize C as three lines:

fi(t) = ti, fa2(t) = (1—1)i+(t)j, Fa(t) = (1—1t)j each over 0 <t < 1
Notice that F(¥(t)) = 0 and F(¥3(t)) = 0. Thus
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Example

Example

Let F = (x? y)ﬁ— (xy3)f. Let C be the closed triangular curve
beginning at (0,0), going to (1,0), then to (0,1), then back to
(0,0). Calculate ¢ F - Tds using Green's Theorem.

We could also caIcuIate the Iine integral using Green’s Theorem.
We have a—N — 8—’\/’ = y3 — x2, and the triangle formed by (0, 0),
(1,0), and (0 1) can be written with horizontal cross-sections as
0<x<1-y, 0<y<1 Thus

oL y=1 y=1 31=1-y
7{ F-Tds / / )dx dy = / [y3x—} dy
y=0 3 x=0
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